CREEP OF HARDENING MATERIALS WITH DIFFERENT
PROPERTIES IN TENSION AND COMPRESSION

A. F. Nikitenko, O. V. Sosnin,
N. G. Torshenov, and I. K. Shokalo

It was pointed out in [1] that light alloys usually had different creep properties in tension and com-
pression. An attempt was also made in [1] to describe the creep processes of such materials for the sim-
plest case, in which the steady creep velocity obeyed a power relationship with respect to stress, the power
index remaining constant. The possibility of describing the creep of nonhardening materials of a more
general anisotropy was indicated in [2]; different relationships were employed for the stress subspace ac-
cording to whether the linear invariant of the stress tensor obeyed the relations ¢jj > 0 or oj; < 0. Each of
these relationships incorporated characteristics of the material determined solely from tension or solely
from compression experiments, respectively. In the present investigation, we shall consider creep exper-
iments carried out on titanium alloys at room temperature, and shall show that an analogous method of de-
scribing the properties (in accordance with the sign of the first invariant of the stress tensor) is also ap-
plicable to the case of hardening materials with different properties in tension and compression.

1. As original material we took a sheet of titanium alloy 20-mm thick. The direction of the greatest
dimension of the sheet we shall subsequently call the longitudinal direction. The blocks used for preparing
the samples were cut in the longitudinal and transverse directions, and also at 45° to the former (diagonal
direction). Depending on the precise nature and program of the experiment, samples of a variety of shapes
were prepared from these blocks; the effect of the type of machining employed and the mode of subsequent
trimming was first studied so as to be able to choose and specify a strict set of working conditions. The
samples were not heat-treated after preparation.

In order to plot the 0—¢y diagrams, we made plane samples 5 X 10 mm? in size with a working length
of 100 mm. In order to plot the analogous diagrams in compression, we made cylindrical samples 12 mm
in diameter with a working length of 40 mm. Figure 1 illustrates the c—¢, diagrams. Here and subsequent-
ly we shall express oj; as a dimensionless quantity — the ratio of the current stress to the tensile yield
stress oy ,. In the diagram the light points represent the experimental data for the elongation of the samples
in the longitudinal direction, the crosses and triangles for the transverse and diagonal direction respective-
ly. The dark points represent data corresponding to the compression of samples cut in the longitudinal di-
rection. It follows from these diagrams that the material is practically isotropic in the sense of instanta-
neous elastic-plastic properties, and has the same properties in tension and compression.

The picture changes completely when creep processes are considered. Creep experiments were
carried out on samples of rectangular section (10 X 20 mm?) with a working length of 160 mm. During the
experiments, the axial elongation of the sample and the change in width and thickness at the middle of the
working section were measured. A number of experiments were carried out on samples of the same type
as those used in plotting the o ~¢g; diagrams, and also on tubular samples. The differences in the creep
diagrams obtained for samples of different geometrical shapes (cross sectionsg) were negligible.

Compressive creep experiments were carried out on cyclindrical samples of the same size as those
used for the o—¢; diagrams. The axial elongation and the changes in diameters in two perpedicular direc-
tions were measured by means of micron dial-type gages; one of the directions corresponded to the normal
to the sheet, as in the tensile experiments.
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Figure 2 shows some typical creep diagrams. Here the light circles indicate the axial strains in
tension and the dark circles the axial strains in compression; the crosses represent the {ransverse strains
normal to the sheet. Figure 2a gives the results obtained with samples taken in the longitudinal direction,
Fig. 2b those of samples taken in the transverse direction. The stresses at which the experiments were
conducted are indicated on the diagrams. The creep diagrams for the diagonal samples are analogous.

On considering these diagrams, we see that, in the creep sense, the material is very anisotropic, and
possesses different properties in tension and compression. The sum of the two transverse strains (in mod-
ulus) is approximately equal to the corresponding modulus of the axial strain, i.e., in the course of creep,
the material behaves as an almost incompressible medium. I is interesting to note that, in all the tensile
experiments, the modulus of the sum of the transverse strains never exceeded the axial strain, whereas in
the compression tests the modulus of the corresponding deformation never exceeded the sum of the trans-
verse strains.

Several experiments lasted more than 1000 h, but the ratio between the transverse strains remained
unaltered, i.e., inthecourse of creep the initial anisotropy of the material underwent no appreciable changes.
It follows from the curves illustrated that, in the creep sense, the weakest direction is the normal to the

sheet and the strongest the transverse direction; the diagonal direction is intermediate, this being valid in
respect of both tension and compression.

The strength properties of the material (in the creep sense) are very similar for the longitudinal di-
rection of the sheet and the direction along the normal to the latter (Fig. 2b), i.e., samples cut from the
transverse direction of the sheet may be regarded as transversally isotropic. This latter circumstance
enabled us to prepare tubular samples with their axes lying along the transverse direction of the sheet, and
to regard these samples as having creep properties of axial symmetry; this was particulary important in
conducting experiments involving simultaneous tensile stresses and torque.

The creep deformation associated with both tension and compression was approximated by the rela-
tion

&£%*de = Bo™dt 1.1)

Figure 3 shows the experimental results in coordinates of log £e—log t for stresses of ¢=0.826 in
tensile experiments and o =0.930 (line 1) and ¢=0.870 (lines 2 and 3) in compressive experiments, and in
coordinates of log £~ log ¢ for t=100 h. Here the light points represent tensile and the dark points com-
pressive data, the figures on the corresponding lines having the following meanings: 1) Results obtained for
samples taken in the longitudinal direction; 2) transverse direction; 3) diagonal direction. Using the data of
Fig. 3 we determined the characteristics of Eq. (1.1):

tension

a=23, n=64 - (1.2)
B, = 30-10"%, B, = 0.27-1076, B, = 2.35.10% [1/h ]

278



1

z
51 o g
Ly =0.22)6=050 |

o o |o ©

©
Ko 6-067)7=057

&

-
v _| X
. e

Dl N O

T R N RS G <

-0 ~0.0f ~042 i6 24 - [y
' /sr ige s | Ut et T:L._f,’l 6=0%

b

\
\
of

RS
)
\\v
N
\
N
\
N
Ay
4
\,
\'\ i; i
B (‘YG"—
1
| ¢
1
i
2

~20 2 > 2 o 1 6=0
/)/ g T P oo oo
lge K 207 @6+ h
Fig. 3 Fig. 4

compression

a* = 6.69, n* = 103
B*=572.10718, By*=0.021.10"18, (1.3)
Bg* = 120-10718 [1/ h |

Here the numbers 1, 2, and 3, respectively, relate to the longitudinal, transverse, and diagonal direc-~
tions.

The computed curves plotted from (1.1) with the characteristics of (1.2) and (1.3) are indicated by the
lines in Fig. 2. The agreement between the computed curves and the experimental data is on the whole quite
satisfactory. ‘

2, In order to describe creep processes in such media in a complex state of stress, we shall assume
(as in [2]) that there exist two potential functions describing the creep strain velocities 7ij in the form

Vs \* oDy
@y == ( i T’llz(TL+l) , n;;= 65,-.]' 2 1)
for the stress range 03; >0
Y3\ . oD,
@2 = (—N T;/:(’rl +1) , Tli]' = —acij (2 .2)

for the stress range o33 < 0.

Here N = 03581 for oj5e4j=0, and we shall consider N as being identically equal to zero for 0ij€4j <0

_ 0n © o w1 )
§=230,;%5,°, 6" = 6;; — 1ab;;5,

T1= An(Gyg — 033)* + Agg (033 — 611)% -+ A3z (511 — Gpu)® + 24126122 + 2A23G05® + 2Az15m12
The expression for Ty has an analogous form, with coefficients Afj, the material being consider ortho~
tropic and the coordinate system coinciding with the principal axes of anisotropy.

If we successively put oy4, 0y, and g3 as the only nonzero components in (2.1) and compare with (1.1),
after substituting the corresponding characteristics of (1.2) we find Ay, Ay, Ags. Expressing the stress
components ayj acting on an area making an angle of 45° with the direction X; in the X;X, plane, after some
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simple transformations [3] and comparison with (1.1), allowing for (1.2), we find Aj,. The coefficients A,q
and Ay may be found analogously from experimental data relating to the diagonal directions in the X,Xg and
X3X; planes. The method of finding Aji* from (2.2), allowing for (1.1) and (1.3), is analogus.

The validity of Eqs. (2.1), with coefficients A;; found from the characteristics of (1.2), was verified
by creep experiments with tubular samples subjected to simultaneous tensile stress and torque.

The original blocks used for making the samples were cut from the transverse direction of the sheet,
The tubular samples were machined with external and internal diameters of 17 and 15 mm, respectively,
and a working length of 50 mm. The axial stress was determined as the ratio of the tensile stress to the
cross-sectional area of the sample, the shear stress as the ratio of the torque to the cross-sectional area,
multiplied by the average ring radius. The state of stress was regarded as uniform and constant during the
creep process,

In describing these experiments, the quadratic forms in (2.1) take the form

8 = 262 4 612, Ty = (A3 + Agg) 0% 4 24577 2.3)

Here we allow for the fact that the material has axial symmetry relative to the X, axis, i.e., Ay; = Ay,
and we introduce the shear stress 7 in accordance with the relations oy, = —7 sin ¢, 0,3=17 cos ¢, where the
angle X, is reckoned from the X, axis in the X;X; plane. From experimental data in uniaxial tension (1.2)
we find

A -+ Agy = 0.5389, 241 = 1.6807

From (2.1) and (2.3) we obtain

(08 + 1) = (o + 1) (n + 1) (262 6v%) V2 [(An1 - As) 6% 4 2Ane?] M D;

Ae C15 — Cse (2 .4)
Ay T 0Bt~ Gy

‘Here
o 20 [(An -lz—cfi)g:z-l— 245177 \\%,-(n + 1) (Au + 4ss)

2 [(Ay 4 Am) 62 42472  (n+1)24n
Ca= 26% + 612 + 3
o [(An - Ass) 6 + 2An7?]

S5 2.5)

Ca—_—'

Expanding the indeterminacy in the second expression of (2.4) which occurs at the instant of loading
when £ =y =0, we find -

Ae/ Ay = Cyo [ C:3t

If the stresses remain constant, then so does the latter ratio.

All the experimental results were compared with the curves computed from (2.4). In Fig. 4 the light
points represent the axial deformations and the dark points the shear strains+y. The continuous lines in-
dicate the computed curves for the axial strains € and the broken lines indicate the computed curves for the
shear strains y. The stresses o and 7 at which the experiments were conducted are indicated in the dia-
grams. For pure torque on the sample, a slight axial elongation occurred; this is reflected in the corre-
sponding diagram. In the same figure, the heavy broken line gives the calculated curve based on the char-
acteristic 2A,* = 1,2835 obtained from experimental results for pure axial compression (1.3). As we should
expect, the latter curve passes below the analogus curve based on the characteristics corresponding topure
tension.

We may conclude from the results presented (Fig. 4) that, in order to describe the creep of materials
with different properties in tension and compression, we may justifiably use the method based on the in-
troduction of different relationships for the stress ranges ojj >0 and ojj <0 respectively. For states of stress
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having oj;~ 0, in which both characteristics of the material exert an influence, the method here proposed
is inapplicable,
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