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It was pointed out in [1] that light al loys usually had different creep proper t ies  in tension and com-  
press ion .  An at tempt was also made in [1] to descr ibe  the creep p roces se s  of such mater ia ls  for the s im-  
ples t  case,  in which the steady creep veloci ty obeyed a power relat ionship with respec t  to s t r e s s ,  the power 
index remaining constant.  The possibi l i ty of describing the creep of nonhardening mater ia ls  of a more 
general  anisotropy was indicated in [2]; different relat ionships were employed for the s t r e s s  subspace ac -  
cording to whether the l inear invariant  of the s t r e ss  tensor  obeyed the relat ions aii > 0 or  r 0. Each of 
these relat ionships  incorporated charac te r i s t i c s  of the mater ia l  determined solely f rom tension or solely 
f rom compress ion  experiments ,  respect ive ly .  In the presen t  investigation, we shall consider creep exper-  
iments ca r r i ed  out on ti tanium alloys at room tempera ture ,  and shall show that an analogous method of de-  
scribing the proper t ies  (in accordance  with the sign of the f i rs t  invariant of the s t r e ss  tensor) is also ap-  
plicable to the case of hardening mater ia ls  with different proper t ies  in tension and compress ion .  

1. As original  mater ia l  we took a sheet of t i tanium alloy 20-mmth iek .  The direction of the grea tes t  
dimension of the sheet we shall subsequently call the longitudinal direction. The blocks used for prepar ing 
the samples  were cut in the longitudinal and t r ansve r se  direct ions,  and also at 45 ~ to the fo rmer  (diagonal 
direction). Depending on the p rec i se  nature and p r o g r a m  of the experiment,  samples of a var ie ty  of shapes 
were p repared  f rom these blocks; the effect of the type of machining employed and the mode of subsequent 
t r imming was f i r s t  studied so as to be able to choose and specify a s t r ic t  set of working conditions. The 
samples were not hea t - t rea ted  after  preparat ion.  

In order  to plot the a - ~  0 d iagrams,  we made plane samples 5 • 10 mm 2 in size with a working length 
of 100 ram. In order  to plot the analogous d iagrams in compress ion ,  we made cyl indrical  samples 12 mm 
in diameter  with a working length of 40 ram. Figure 1 i l lustrates  the a - e  0 d iagrams.  Here and subsequent- 
ly we shall express  aij as a dimensionless  quantity - the ratio of the cur ren t  s t r e ss  to the tensile yield 
s t r e ss  %.2. In the diagram the light points r ep resen t  the experimental  data for the elongation of the samples 
in the longitudinal direction,  the c ros se s  and t r iangles  for the t r ansve r se  and diagonal direction respec t ive -  
ly. The dark points r ep resen t  data corresponding to the compress ion  of samples cut in the longitudinal di-  
rect ion.  It follows f rom these d iagrams that the mater ia l  is prac t ica l ly  isotropic in the sense of instanta-  
neous e las t ic -p las t ic  p roper t ies ,  and has the same proper t ies  in tension and compress ion.  

The picture changes completely when creep p roces se s  are  considered.  Creep experiments  were 
ca r r i ed  out on samples of rec tangular  section (10 • 20 mm 2) with a working length of 160 ram. During the 
experiments ,  the axial elongation of the sample and the change in width and thickness at the middle of the 
working section were measured .  A number of experiments  were ca r r i ed  out on samples of the same type 
as those used in plotting the ~ - e 0  d iagrams,  and also on tubular samples.  The differences in the creep 
diagrams obtained for samples of different geomet r ica l  shapes (cross  sections) were negligible. 

Compress ive  creep experiments  were  ca r r i ed  out on cycl indr ical  samples of the same size as those 
used for the ~-~0 d iagrams.  The axial elongation and the changes in d iameters  in two perpedicular  d i rec -  
tions were  measured  by means of micron dial- type gages; one of the direct ions corresponded to the normal  
to the sheet, as in the tensile experiments .  
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Figure 2 shows some typical creep diagrams.  Here the light c i rc les  indicate the axial s t rains  in 
tension and the dark c i rc les  the axial s t rains  in compress ion;  the c ro s se s  r ep resen t  the t r ansve r se  s t rains  
normal  to the sheet. Figure  2a gives the resu l t s  obtained with samples taken in the longitudinal direction,  
Fig. 2b those of samples taken in the t r ansve r se  direction.  The s t r e s ses  at which the experiments  were 
conducted are  indicated on the d iagrams.  The creep diagrams for the diagonal samples are  analogous. 

On considering these d iagrams,  we see that, in the creep sense, the mater ia l  is ve ry  anisotropic,  and 
posses ses  different proper t ies  in tension and compress ion.  The sum of the two t r ansve r se  s t rains  (in mod- 
ulus) is approximately equal to the corresponding modulus of the axial s train,  i.e., in the course  of creep,  
the mater ia l  behaves as an a lmost  incompressible  medium. It is interesting to note that, in all the tensile 
experiments ,  the modulus of the sum of the t r ansve r se  strains never  exceeded the axial strain,  whereas in 
the compress ion  tes ts  the modulus of the corresponding deformation never exceeded the sum of the t r ans -  
ve rse  s t ra ins .  

Several  exper iments  lasted more than 1000 h, but the rat io between the t r ansve r se  s t rains  remained 
unaltered, i.e., inthe course  of creep the initial anisotropy of the mater ia l  underwent no appreciable changes. 
It follows f rom the curves  i l lustrated that, in the creep sense,  the weakest  direct ion is the normal  to the 
sheet and the s t rongest  the t r ansve r se  direction; the diagonal direct ion i s  intermediate,  this being valid in 
respec t  of both tension and compress ion .  

The strength proper t ies  of the mater ia l  (in the creep sense) are  ve ry  s imilar  for the longitudinal di-  
rec t ion of the sheet and the direction along the normal  to the latter (Fig. 2b), i.e.,  samples cut f r o m t h e  
t r ansve r se  direction of the sheet may be regarded  as t r ansve r sa l ly  isotropic.  This la t ter  c i rcumstance  
enabled us to p repare  tubular samples with their  axes lying along the t r ansve r se  direction of the sheet, and 
to r ega rd  these samples  as having creep proper t ies  of axial symmetry ;  this was par t icu la ry  important  in 
conducting experiments  involving simultaneous tensile s t r e s ses  and torque. 

The creep deformation associa ted with both tension and compress ion  was approximated by the r e l a -  
tion 

sad8 = B o n d t  (1.1) 

Figure 3 shows the experimental results in coordinates of log z- log t for stresses of g = 0.826 in 
tensile experiments and ~ = 0.930 (line 1) and c =0.870 (lines 2 and 3) in compressive experiments, and in 
coordinates of log e -  log c for t = 100 h. Here the light points represent tensile and the dark points com- 
pressive data, the f igures on the corresponding lines having the following meanings: 1) Results  obtained for 
samples taken in the longitudinal direction; 2) t r ansve r se  direction; 3) diagonal direction.  Using the data of 
Fig. 3 we determined the charac te r i s t i cs  of Eq. (1.1): 

tension 

cr = 2.3, n = 64 (1.2) 

B1 = 30.t0 -~, B2 ~ 0.27.10 -e, B e ~ 2.35.t0 ~ [i/h ] 
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c o m p r e s s i o n  

~* = 6.69, n* = 103 
BI* =572.10-1s, B2.=0.02i .t0-18, (1.3) 

Bs* = t20.10 -Is [ t /h  ] 

H e r e  the  n u m b e r s  1, 2,  and  3, r e s p e c t i v e l y ,  r e l a t e  to the  long i tud ina l ,  t r a n s v e r s e ,  and d i a g o n a l  d i r e c -  
t i o n s .  

The  c o m p u t e d  c u r v e s  p l o t t e d  f r o m  (1.1) wi th  the  c h a r a c t e r i s t i c s  of (1.2) and  (1.3) a r e  i n d i c a t e d  by  the  
l i n e s  in F i g .  2.  The  a g r e e m e n t  b e t w e e n  the  c o m p u t e d  c u r v e s  and the  e x p e r i m e n t a l  da ta  i s  on the  whole  qu i t e  
s a t i s f a c t o r y .  

2. In o r d e r  to d e s c r i b e  c r e e p  p r o c e s s e s  in such  m e d i a  in a c o m p l e x  s t a t e  of s t r e s s ,  we s h a l l  a s s u m e  
(as  in [2]) tha t  t h e r e  e x i s t  two p o t e n t i a l  func t ions  d e s c r i b i n g  the  c r e e p  s t r a i n  v e l o c i t i e s  ~i j  in the  f o r m  

(:I)l  ~ T T ~ ( n + l ) ,  T]ij ~ a6i j  (2.1) 

fo r  the  s t r e s s  r a n g e  a i i  > 0 

(2.2) 

fo r  the  s t r e s s  r a n g e  a i i  < 0. 

H e r e  N = a i j s  f o r  g i j~i j -> 0, and we s h a l l  c o n s i d e r  N a s  be ing  i d e n t i c a l l y  equa l  to z e r o  fo r  a i j~ i j  <0 

- -  o o ~ . v  

T1 = An ( ~  ~ r ~_ A~ (oa3 -- 611) 2 ~ A~ (on -- o~)~ -~ 2A12Ola 2 -~ 2A~a  ~ -~ 2A31~al ~ 

The  e x p r e s s i o n  fo r  T 2 has  an  a n a l o g o u s  f o r m ,  * wi th  c o e f f i c i e n t s  Ai j  , the  m a t e r i a l  be ing  c o n s i d e r  o r t h o -  
t r o p i c  and the  c o o r d i n a t e  s y s t e m  co inc id ing  wi th  the  p r i n c i p a l  a x e s  of a n i s o t r o p y .  

If we s u c c e s s i v e l y  pu t  f i l l ,  0"22, and ff33 a s  the  on ly  n o n z e r o  c o m p o n e n t s  in (2.1) and  c o m p a r e  wi th  (1.1), 
a f t e r  subs t i t u t i ng  the  c o r r e s p o n d i n g  c h a r a c t e r i s t i c s  of  (1.2) we f ind  Al l  , A22 , A33. E x p r e s s i n g  the  s t r e s s  
c o m p o n e n t s  ~ij a c t i n g  on an a r e a  mak ing  an  ang le  of 45 ~ wi th  the  d i r e c t i o n  X 1 in the  X1X ~ p l a n e ,  a f t e r  s o m e  
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simple t ransformat ions  [3] and compar ison with (1.1), allowing for (1.2), we find A12. The coefficients A23 
and A31 may be found analogously f rom experimental  data relat ing to the diagonal direct ions in the X2X 3 and 
X3X 1 planes. The method of finding Aij* f rom (2.2), allowing for (1.1) and (1.3), is analogus. 

The validity of Eqs. (2.1), with coefficients Aij found f rom the charac te r i s t i c s  of (1.2), was verif ied 
by creep experiments  with tubular samples subjected to simultaneous tensile s t r e s s  and torque. 

The original  blocks used for making the samples were cut f r o m  the t r ansve r se  direction of the sheet, 
The tubular samples were machined with external  and internal d iameters  of 17 and 15 mm, respect ively ,  
and a working length of 50 ram. The axial s t ress  was determined as the rat io of the tensile s t r e ss  to the 
c ross - sec t iona l  a rea  of the sample,  the shear s t r e ss  as the rat io of the torque to the c ros s - sec t iona l  a rea ,  
multiplied by the average ring radius.  The state of s t ress  was regarded  as uniform and constant during the 
creep p rocess .  

In describing these experiments,  the quadratic fo rms  in (2.1) take the form 

S = 2C~ -}- 6T s, /'I = (All + A33) (# + 2A21T ~ (2.3) 

Here we allow for the fact that the material has axial symmetry relative to the X 2 axis, i.e., A21 = A23 , 
and we introduce the shear stress 7 in accordance with the relations a2i = - 7  sin ~, ~23 =7 cos ~o, where the 
angle X i is reckoned from the X i axis in the XIX 3 plane. From experimental data in uniaxial tension (1.2) 
we find 

AII + Ass = 0.5389, 2Asl = 1.6807 

From (2.1) and (2.3) we obtain 

(~8 --[-- TT) ~+1 = (a + l) (n + t) (2~ s --]--6'#) '/~'~ [(An + Am) ~ + 2A~aX~]%(n+x)t 
As Cx~ - -  Cse 
AT -- C23T- C3"~ 

(2.4) 

H e r e  

2a [(AlI --[- As3) es + 2As:tT~]X 
C1 --  ~ ( n  + t) (An + At,) 2~+6~  

Cs= 2a[(An+Aas)~S+2Atlxs] (n+t)  2A21 
2~s-{-6x t + 3 

a [(An+A*~ ZS+2A21~ ~] 
Cs---- . 8 + . 7  

(2.5) 

Expanding the indeterminacy in the second express ion of (2.4) which occurs  at the instant of loading 
when e =7 = 0, we find 

A8 / A7 = CI~ / C23x 

If the s t r e s se s  r emain  constant,  then so does the lat ter  rat io.  

All the experimental  resu l t s  were compared with the curves  computed f rom (2.4). In Fig. 4 the light 
points r ep resen t  the axial deformations and the dark points the shear  s t rains  T. The continuous lines in- 
dicate the computed curves  for the axial s t ra ins  e and the broken lines indicate the computed curves  for the 
shear  s trains 7. The s t r e s se s  a and T at which the experiments  were  conducted a re  indicated in the dia- 
g rams .  For  pure torque on the sample,  a slight axial elongation occurred;  this is ref lected in the c o r r e -  
sponding diagram. In the same figure, the heavy broken line gives the calculated curve based on the cha r -  
ac ter i s t ic  2A21* = 1,2835 obtained f rom experimental  resu l t s  for pure axial compress ion  (1.3). As we should 
expect, the latter curve passes  below the analogus curve based on the charac te r i s t i c s  corresponding to pure 
tension. 

We may conclude f rom the resu l t s  presented (Fig. 4) that, in order  to descr ibe  the creep of mater ia ls  
with different proper t ies  in tension and compress ion,  we may justifiably use the method based on the in- 
troduction of different relat ionships for the s t r e s s  ranges  aii >0 and crii < 0 respect ively .  For  states of s t ress  
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having ~ii ~ 0, in which both c h a r a c t e r i s t i c s  of the ma te r i a l  exe r t  an influence, the method he re  p roposed  
is inapplicable.  
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2. 
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